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Abstract
To render images from volume datasets, an interpolation method also called reconstruction is needed.
The level of details of the resultant image closely depends on the filter used for reconstruction. We
propose here a new filter producing C1 continue surfaces. The provided image quality is better than
current high-quality algorithms, like splatting or trilinear raycasting, where tiny details are often
eliminated. In contrast with other studied high quality filters that are practically unusable, our algorithm
has been implemented interactively on a modest platform thanks to an efficient implementation using
parametric cubes. We also demonstrate the interest of a min-max octree in the visualization of
isosurfaces interactively thresholded.
Keywords: Isosurface, Reconstruction filter, Octree, Quantization.

1. Introduction

Visualization of isosurfaces is often needed for the
rendering of scientific volumetric data. One of the first
algorithms was based on the cuberille model3. In this
method, sampled points of the volume were considered as
parallelepipeds. Thus projecting the visible faces into the
image plane performs the rendering. However, the low
resolutions of the normals and the step effects have clearly
limited the rendering quality. This method can be
considered as a zero-order reconstruction method, because
there is no interpolation.

Lorensen and Cline have proposed two great
improvements for the visualization of isosurfaces by using
a cube formed of eight neighbouring voxels. The first one
is the well-known marching-cube4 algorithm where a
triangular mesh is deduced from the vertex configuration.
This algorithm provides a C0 continuity of the isosurface
between the cells. However, the normals of the triangle
vertexes can be trilinearly interpolated from the cube
vertexes in order to look like a C1 continue surface for fine
visualizations. Because the isosurface is roughly
approximated, tiny details are lost. A better approach is the

dividing cube6 algorithm where the isosurface is
approximated with trilinear interpolation, but the same way
to compute the normals also limits the rendering quality.
These two algorithms use a one-order reconstruction
scheme (linear interpolation).

High quality direct volume rendering algorithms can
also be used for isosurface visualization2,5,9,10,11,22.
Raycasting is probably the most used method. This one-
order method also uses trilinear interpolation that can be
associated with fuzzy classification in order to improve
renderings. Although the rendering times are slow,
interactive implementations exist19,21. It is also true for
splatting11,20,24 which is the other solution in vogue for
producing high quality images. Splatting makes an
approximate convolution by projecting fuzzy voxels
(gaussian kernels) on the image plane. The order of this
method depends on the gaussian radius. However, the final
result is not a real product of convolution, and the quality is
not really better than raycasting.

Until now, all the described algorithms have been
thoroughly studied and implemented. However other kinds
of methods7,14,16,17,23,26, generally based on BC-spline or
windowed sinus cardinal filters, have also been studied but
they seem to be too complex to be implemented in a
convivial rendering software. In the best case, they can be
used for volume resampling9. The signal processing theory
states that a signal sampled under the Nyquist frequency,
which is often the case with filtered medical datasets, can
be reconstructed by a convolution with the ideal sinus
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cardinal filter.  Unfortunately, it is not possible to
implement this filter since its size is infinite, so filters of
limited order have been studied. Nevertheless we can
consider that increasing the filter size improves the signal
reconstruction in general. As an important result of those
works14,23, it appears that the trilinear filter is far from the
optimum convolution filter.

Thus high quality and interactivity seem to be
irreconcilable. The works presented here try to give a
solution to this difficult problem with a new two-order
filter. Its complexity is less than classical high-order filters,
like BC-splines (three order), and it allows an interactive
visualization of isosurfaces thanks to an efficient
implementation using both parametric cubes and a min-
max octree. However, due to the amount of extra-
computations needed for direct volume rendering, its use in
this case will not be discussed here.

Section 2 will describe the 1D filter in order to have a
better understanding, and section 3 will extend this
principle to a 3D reconstruction of the volume. Section 4
will describe our interactive implementation and some
results will be discussed in section 5.

2. 1D Filter

The filter presented here is a two-order filter, so it takes
3 neighbouring samples (Pi-1, Pi, Pi+1) to reconstruct the 1D
signal (fig. 1). First, the Pi- and Pi+ points must be defined
in order to reconstruct the interpolated curve:

A B-spline curve is now defined from the control
points (Pi-, Pi, Pi+) with t=0 at i-0.5 and t=1 at i+0.5:

Finally we have:

Properties

The first property is that the curve may not pass
through the sampled points. Thus the curve never reaches
local maximums, which can be useful when noise is
present.

The gradient properties are more interesting. The first
derivative of the curve is given by:

With:

 We see the derivative is a linear interpolation of two
middle gradients. Hereby, the C1 continuity can be easily
proved, so we do not need to demonstrate it. We take this

way to compute the gradient for more precise than the
classical central difference gradient. In order to argue in
this way, we analyse those two gradients at both i and i+1/2
abscissas:

The central difference gradient and the middle
difference gradient are the same here. In fact the central
gradient can be reconstructed from the middle difference
gradient however the other way around is not true. Thus the
gradient information is degraded with this latter. At the
i+1/2 abscissa we have:

The two gradients are the most divergent here. The
central gradient is averaged with four points while the
middle gradient is more compact. So normals computed
with the first one should be smoother. On the other hand,
tiny details might be lost. We will verify it in section 5.

3. Extension to Volumes

The extension to 3D volumes is easy, and the given
properties in section 2 are also true in 3D. However, we
will not explicitly develop the equation, because it would
be too long. Twenty-seven neighbouring voxels are now
needed for the reconstruction within a cube that has the
voxel size. We will call this cube (or voxel) the parametric
cube because of the parametric way to reconstruct the
signal. The previous 1D filter is going to be applied three
times on the 27 voxels (referenced Pijk). This h
interpolation at the location (x, y, z) can be written as:

Where Ri is given by:
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Figure 1: 1D Filter
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With

Nevertheless, this way to compute the reconstruction is
too expensive to be processed. Thus, the h function can be
rewritten by both developing and substituting the terms of
the previous equation (1a):

The Sijk coefficients are computed from the Pijk values,
which requires 316 additions and 80 multiplications per
cube. Then the interpolation computation (1b) requires 54
multiplications and 26 additions.

Because this way to interpolate is also too demanding,
it must be optimised. Finding out the isosurface that
crosses a parametric cube will be performed by sampling
values along every ray that goes through this cube. Let P0

(x0, y0, z0) and P1 (x1, y1, z1) be the intersection between the
ray and the cube, the position of the sampled point can be
written in a parametric way:

By substituting (2) in (1b), the reconstruction along a
ray can be written as a six degrees polynomial:

Then the reconstruction requires only 6 additions and
11 multiplications. Furthermore, if the number of steps is
known, the ti values can be pre-computed in order to reduce
the number of multiplications to 6. However, before
sampling values along a ray, the Ci coefficients must be
computed for every ray from P0, P1, and the Sijk

coefficients. This operation needs around 724
multiplications and 108 additions. But by using
quantization (See section 4.2), we can reduce it to 101
additions and 108 multiplications.

Instead of sampling values along a ray, another solution
for finding out the intersection with the isosurface would
have been to analytically solve the polynomial (3).
Unfortunately, this solution is expensive. Nevertheless, in
order to have a better accuracy of t when the intersection is
detected, the value of t is linearly interpolated from the last
value and the value obtained just before using (4).

  With:

Shading

Once the intersection is detected, shading must be
done. A Phong shading with depth-cueing has been chosen
for realistic renderings. Thus the normal of the surfaces is
needed. Because our 3D filter is C1 continue, the normal
can be analytically solved with (5). This computation
requires 51 additions and 54 multiplications, without
allowing for the shading implementation, but it is only
performed once per ray.

4. Fast Implementation

As it was mentioned before, our new filter requires a
lot of arithmetic instructions, so optimisations must be
implemented in order to get interactive renderings.

4.1.  The algorithm

We have chosen an object-order algorithm where the
voxels will be reviewed in a front-to-back order. The basic
algorithm to render a parametric cube can be written as
shown below:

BEGIN
COMPUTE Sijk FROM Pijk

FOR every ray that intersects the cube DO
BEGIN
COMPUTE Ci FROM P0, P1, Sijk

FOR n=1 TO NumberOfSteps DO
IF h(tn)>Threshold THEN

BEGIN
COMPUTE t FROM tn, tn-1,, Threshold, h
COMPUTE x, y, z FROM t
COMPUTE pixel shading FROM x, y, z, Sijk

BREAK
END

END
END

By profiling this code, one can see two very expensive
instructions slowing down the algorithm. The first one is
that the algorithm must solve all the rays that intersect the
parametric cube, which is a complex algorithm, a priori.
Next, the algorithm has to perform the expensive
instruction of computing the Ci coefficients for each ray.
Fortunately, those drawbacks can be partially avoided by a
quantization of the image plane.

4.2.  Quantization

The idea for accelerating the projection in object-order
algorithms has simultaneously appeared20, 24, 25 in some fast
methods. The only requirement (but Huang24) of the
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method is the use of orthogonal projections. Huang24 et al.
describe a fast splatting method while Mroz25 et al. suggest
a fast approximation of the cell projection for MIP
renderings. However those two methods are a bit flawed on
axes-aligned viewings, and only Mora20 et al. give a
solution for solving the exact projection of a voxel. Thus,
our algorithm is an extension of this method. We will not
describe once again the complete algorithm, but only the
main lines. So the reader is invited to take a look at these
references.

In orthogonal renderings, a voxel projection is always
represented by the same template hexagon. The voxel
projections only differ by the translation value. Thus, the
projection of the voxel centre is enough to give the
translation information. A pixel list depending on the
projection of the voxel centre can be used. In order to have
a better precision, the pixel have to be subdivided, which
involves now a pixel list per subdivision (See Fig. 2a).
These precomputed tables ensure to know quickly the rays
(i.e. pixels) that go through the parametric cube with a
given accuracy.

The second problem is to accelerate the computation of
the Ci coefficients. As it was seen before, those coefficients
depend on both the Sijk coefficients and the ray. They can
be written as follows:

Where the Kijk coefficients only depend on the ray.
Those coefficients are in fact the main part of the
computation. However, by assuming that a limited number
of rays is enough to describe all the rays, we can
precompute those coefficients for every quantized ray. We
will not explicitly describe here the Kijk computations from
the ray, so those results will be considered as well

established. We are just going to describe how to make a
set of precomputed rays (fig. 2b).

For easy precomputations, all the rays are equally
spaced (however, unevenly distributed rays could be a
potential improvement in future works). This is done by
regularly sampling the rectangle surrounding the template
hexagon. A point within the template hexagon means that
the equivalent ray intersects the cube. Then the algorithm
just has to precompute the Kijk coefficients for those rays.

It has been seen earlier that a projection can be
described by a pixel list. For every pixel (representing a
ray) of this list, the Kijk coefficients must be accessible.
Thus, a pointer to the best representative quantized ray is
associated to the pixel index (fig. 2a). All these lists can be
quickly preprocessed (10 ms) before the rendering step.

Using this method, the computation of the Ci

coefficients is reduced to 101 additions and 108
multiplications. Nonetheless this is done for every ray
intersecting the cube. So this expensive operation should be
avoided as much as possible. We use a min-max octree to
determine quickly the voxels of interest.

4.3.  Min-Max Octree

Octrees have been studied a lot1,13,15,27, so it is assumed
that the reader is familiar with it. Its implementation itself
is not an important factor of speed-up. So we will just
describe it for more information.

We use a linear array for storing the octree. All the
nodes but the leaf nodes store the two min-max values and
one pointer to the 8 children. The leaf nodes only store the
min-max values summarising the 27 voxels involved in the
reconstruction within the parametric cube. So the size of
the octree is approximately given by:
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Figure 2: Fast determination of the projection (a) and use of precomputed rays (b).
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Where n is the number of voxels within the volume,
Sminmax is the size of the min (or max) value and Spointer the
size of the pointer. If a voxel value is stored with 16 bits
and pointer with 32 bits, then the size of the octree is
approximately 2.5 times the size of the volume (without
allowing for the compression possibilities of insignificant
space region). Experimental results are very close to this
formula. Although the standard memory size seems good
enough nowadays, it could be a problem. In this case, we
suggest not storing the last level of the octree. However,
more voxels will be processed.

During the rendering, the octree will be traversed in a
front-to-back order. All the nodes where the min and max
values do not enclose the surface threshold will be skipped.
Thus this method allows the user to interactively change
the threshold, which is not possible in some other methods,
like the marching-cube algorithm where the triangular
mesh must be recomputed.  

5. Experimental Results

Experimental results will be analysed here according to
two criteria: the speed rendering and the quality rendering.
Three data sets will be used for the first criterion: two well-
known UNC data sets (a 256×256×225×8 CT head and a
256×256×167×8 MR brain) plus the synthetic Marschner
& Lobb data set14 (41×41×41×8). An additional MR data
set (256×256×73×16) will be used in the second part. All
the renderings have been performed on a modest platform
with a 900 MHz AMD Athlon processor associated with
256 MB. The sampling rate along a ray has been set to 16,
the number of subdivision within a pixel and the number of
precomputed rays have both been set to 64×64.

Rendering Times

Four renderings have been tested here (See figure 3)
with three image sizes.  The head data set has been
rendered with both a face threshold and a bone threshold.
Results (See table 1) show that interactive rendering
(around one second) is possible with our method on

classical image sizes. We came to a surprising observation:
times do not seem to be volume size dependent. Although
the Marschner & Lobb times are close to other volumes, its
size is two hundred times lower. The rendering time seems
to be more affected by the image size, like the raycasting
algorithms.

 In fact, the time the algorithm needs to run the volume
is negligible in comparison with the time the algorithm
needs to compute the polynomial coefficients.
Furthermore, a voxel that belongs to a small volume will
project on more pixels (or rays) than a big volume voxel
does. Actually, the total number of projected pixels is
approximately constant in both cases, and it only depends
on the image size.

Data set Size Image Mean Min Max
Head (face) 2562×225 2562 0,61 0,51 0,76
Head (face) 2562×225 5122 1,6 1,2 2
Head (face) 2562×225 7682 2,9 2,2 3,8
Head (Skull) 2562×225 2562 0,51 0,42 0,59
Head (Skull) 2562×225 5122 1 0,8 1,3
Head (Skull) 2562×225 7682 1,9 1,3 2,8
Brain 2562×167 2562 0,74 0,49 0,88
Brain 2562×167 5122 1,7 1,1 2,1
Brain 2562×167 7682 3,9 3,6 4,5
Marschner&Lobb 413 2562 0,22 0,12 0,28
Marschner&Lobb 413 5122 0,8 0,4 1
Marschner&Lobb 413 7682 1,9 1,2 2,7

Table 1: Rendering times (in Seconds)

Data Set Image Relevant rays Total rays Ratio
Head 5122 158K 728K 4.6
Brain 5122 123K 901K 7.3
Marschner&Lobb 5122 123K 972K 7.9

Table 2: Octree efficiency

In order to test the min-max octree, profiling tests have
been done. The results are summed up in table 2. The
relevant rays’ column indicates the number of rays
intersecting the volume (i.e. the number of pixels
contributing to the final image). The total rays’ column is
the total number of ray-voxel intersections computed. This
is also the number of times the Ci polynomial coefficients
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Figure 3: Four renderings from a CT head (a and b), the Marschner & Lobb data sets (c) and a MR brain (d).
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are computed. The ratio between those two columns can be
interpreted as the average number of visited voxels per ray.

Results are really attractive because a ray intersects the
isosurface around the seventh voxel (see ratio). If we allow
for the total number of pixels instead of the relevant rays,
results are even better.

In future works, we will try to improve those results.
Here, the program has been implemented with the C
language. However we did not have enough time neither to
optimise the equation implementation, to perform adaptive
sampling, nor to accelerate the implementation with the use
of SIMD instructions. We expect our program to be at least
twice faster with those optimisations.

Image Quality

This is probably the most difficult thing to evaluate.
The ray-casting algorithm is considered as one of the best
methods currently used. Thus, a high-quality ray-casting
algorithm has been implemented in order to make a
comparison. It uses trilinear interpolation along the ray and
normals are also trilinearly interpolated before the shading
operation. For a better comparison, the ray-casting has the
same parameters, like the shading parameters, the threshold
value or the sampling rate along a ray, even if 16 samplings
per ray are never used in practice with the standard
implementations.

Like other studies17, 22, 23 about the rendering quality,
we also use the Marschner & Lobb data set14 for the first
test. So the reader is invited to take a look at those
publications for a better understanding of this section. The
principal property of this data set is that the main part of
the frequencies is right below the Nyquist frequency. Three
rendering examples are given in figure 5.

This figure clearly shows the superiority of our new
filter in the high frequencies domain. The rendering made
with parametric cubes is closer to the ideal rendering of the
function than the one made with ray-casting.

However, high frequencies are only visible in tiny
details. In order to see those differences in real situations,

(b)
Figure 6: Two renderings of an MR brain using Parametric Cubes (a) and Ray-casting (b)

(a)

(a)

Figure 5: Marschner & Lobb data set: ideal (a),
parametric cubes (b) and ray-casting (c)

(b) (c)

(a)   (b)     (c)        (d)         (e)           (f)
Figure 4: Zooms of the brain Volume using parametric cubes (a, c, f) and ray-casting (b, d, e)
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renderings of the brain data set have been magnified.
Results are available in figure 4. Looking for significant
tiny details is not easy, since we do not know the real shape
of the volume. However it appears that the brain data set
has two earring holes (fig. 4a, fig. 4b, fig. 4c, fig. 4d), and
so we have magnified those details. One can see that the
earring holes rendered using our new filter are closer to the
reality than those with the ray-casting algorithm. Two
magnifications have also been done on the brain (fig. 4e,
fig. 4f) clearly showing that more details are visible with
our method.

Another interesting property of the new filter proposed
here is its ability to smooth local maximums within the
signal, which is helpful when noise is important. We use an
additional MR brain data set to show it (fig. 6). Although
the two images have been rendered with the same
threshold, the image rendered with our filter is less noisy
than with a traditional ray-casting. However, larger objects
are preserved. This property should be a great improvement
for the visualization of noisy MR datasets, like
angiography renderings.

The last point of our study is about normal smoothing.
Normals computed with the central difference gradient (cf.
section 2) are better smoothed than the middle difference
gradient (see fig.7). It can be helpful when one wants a nice
visualization, or when the volume is insufficiently sampled.
In figure 7, the hatching is clearly reduced on the ray-
casting generated image. However, it is also a loss of
information in general.

6. Conclusion and Future Works

We have shown here a new two-order filter having
some remarkable qualities. Its application to the
visualization of isosurfaces has been successfully applied

with the use of parametric cubes. The image accuracy is
better than the one produced with a ray-casting algorithm.
We have also demonstrated the potentialities of a min-max
octree for isosurface visualization, and especially with
parametric cubes. Thus our algorithm reaches an
interactive frame rate on standard volumes and standard
image sizes with an orthogonal projection, which has never
been reported before for this level of quality.

However, our algorithm is currently restricted to
isosurface renderings. By both optimising the algorithm
and the use of assembled instructions, we will try to adapt
it for direct volume renderings. Finally the parametric
cubes could be used in the same way to accelerate other
methods like trilinear ray-casting, or more complex filters
like cubic filters.
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